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1. Introduction 
This project implements clustering and outlier detection techniques from scratch using 

Python. Three datasets of 500 points are randomly generated in 3D Euclidean space, 

outliers are found out and removed for a cleaner dataset. This new cleaned dataset is then 

used for clustering and analyzed using K-Means and Hierarchical Agglomerative Clustering 

(HAC) and Silhouette Coefficient is used to evaluate the performance of the algorithms. 

Then a comparison is made and the better algorithm for that dataset is printed out. 

2. Dataset Generation and Outlier Detection 

The dataset is created by generating 500 random points in 3D Euclidean space using the 

function generatePoints(n, spread) from the code. Each point is a coordinate (x, y, z) where 

the values are generated using random.uniform(-spread, spread) (see line inside 

generatePoints). This spread parameter controls how compact or dispersed the points are. 

For example, when spread=5, the points are tightly clustered near the origin, while a 

spread=15 results in much wider dispersion. 

 

By adjusting this parameter, three distinct datasets are created to simulate different 

clustering scenarios (see the calls to generatePoints() in the main() function).  

 

 

 

 

 



Once the dataset S is generated, the program proceeds to identify and remove outliers that 

are points that significantly deviate from their local neighborhood. This is done using a 

distance-based approach in the detectOutliers(points, k=5) function. For each point, the 

function averageKnnDistance() calculates its average distance to its 5 nearest neighbors 

using the euclideanDistance(p1, p2) function.  

 

 

  

 

These average distances are collected and then used to compute the overall mean and 

standard deviation via calculateMean() and calculateStdDeviation(). 

  

If a point’s average distance to its neighbors exceeds the mean by more than 2 standard 

deviations, it is considered an outlier (see the threshold check inside detectOutliers).  

 



These outliers are printed to the console and removed from the original dataset.  

 

The cleaned dataset is referred to as S’ and is used as input for the clustering algorithms. 

  

  

This preprocessing step ensures that noise and extreme points do not skew the clustering 

results. By focusing only on meaningful, representative data, the clustering algorithms are 

able to detect more accurate and reliable structures within each dataset. 

3. Clustering Algorithms 

After removing outliers, the cleaned dataset S’ is clustered using two unsupervised learning 

algorithms: K-Means and Hierarchical Agglomerative Clustering (HAC). 

The kMeans(points, k, maxIters=100) function implements the K-Means algorithm, which 

begins by randomly selecting k initial centroids using the random.sample() method. These 

centroids serve as initial cluster centers. Each point is then assigned to the cluster 

corresponding to the nearest centroid, with distance calculated using the custom 

euclideanDistance() function.  



After assigning all points, new centroids are computed for each cluster using 

meanPoint(cluster), which returns the average of all x, y, and z coordinates within that 

cluster.  

 

The algorithm iterates over this assignment-and-update process until either the centroids 

stabilize (i.e., do not change between iterations) or the maximum number of iterations 

(maxIters) is reached. The final result is a list of k clusters containing the grouped 3D 

points. The quality of this clustering is then assessed using the silhouetteScore() function, 

which evaluates intra-cluster compactness and inter-cluster separation. This approach is 

well-suited to datasets where clusters are relatively spherical and evenly distributed in 

space. 

The hac(points, k) function implements HAC using a bottom-up approach. It starts by 

placing each point into its own cluster. It then repeatedly merges the two clusters that are 

closest together until only k clusters remain. The distance between clusters is calculated 

using the helper function linkageDistance(c1, c2, method), which supports four different 

strategies: single, complete, average, and centroid linkage.  

 



Each 

strategy defines “closeness” differently like single linkage looks at the shortest distance 

between any two points across two clusters, while centroid computes the Euclidean 

distance between the cluster means.  

 

HAC is run separately for each of the four linkage strategies, and the resulting clusters are 

evaluated using the silhouetteScore() function. The strategy that yields the highest 

silhouette score is selected as the best method for that dataset. This makes HAC more 

flexible than K-Means for datasets with irregular cluster shapes, varying densities, or 

hierarchical structures.  



4. Datasets and Parameters 

This project evaluates the performance of clustering algorithms across three different 

datasets, all generated synthetically in a 3-dimensional Euclidean space. Each dataset 

contains 500 points, and all data is generated using the generatePoints(n, spread) function, 

where the spread parameter controls how dispersed the data points are in the 3D space. 

The points are generated with random.uniform(-spread, spread) along each axis (x, y, z), 

resulting in uniformly distributed values within a cubic region. This allows the generation of 

datasets with varied clustering difficulty, simulating different real-world data distributions. 

The use of a fixed random seed (random.seed(42)) ensures reproducibility and the same 

points are generated across multiple runs for consistent testing and evaluation. 

Dataset 1: Default Spread (spread=10) This is the baseline dataset where points are 

generated in a cube ranging from -10 to 10 on each axis. This spread typically results in 

moderate separation between natural clusters, allowing both K-Means and HAC to perform 

fairly well. It serves as a general-purpose dataset to benchmark the effectiveness of both 

algorithms under standard conditions. 

 

Dataset 2: Tight Spread (spread=5) This dataset has a smaller spread, meaning all points are 

clustered more closely around the origin (within a -5 to 5 range in each dimension). As a 

result, the distances between points are shorter and clusters are more compact. This 

configuration is ideal for K-Means, which favors spherical, equally-sized clusters. However, 

if the clusters overlap slightly, HAC may still outperform in identifying nuanced boundaries 

depending on the linkage strategy used. 

 

Dataset 3: Wide Spread (spread=15) In this dataset, points are generated over a larger area 

(range: -15 to 15). This produces more sparse, scattered data, which may include loosely 

formed or unevenly spaced clusters. K-Means often struggles in such scenarios because it 

assumes cluster compactness and equal density. HAC, especially with average or complete 

linkage, is typically more adaptable in these conditions and may produce more meaningful 

groupings. 

 

User-Specified Parameter – Number of Clusters (k) The number of desired clusters k is 

specified by the user at runtime via input. This value is passed into both clustering 



functions: kMeans(points, k) and hac(points, k). Internally, this value controls: The number 

of centroids in K-Means. The stopping condition in HAC (i.e., stop merging when k clusters 

remain). 

 

If the user provides invalid input (non-integer or blank), a default value of k = 3 is 

automatically used. This parameter allows flexibility in testing different cluster 

configurations and helps simulate varying real-world clustering objectives. 

 

5. Dataset Analysis  

The function runAnalysisOnDataset(points, datasetName, k) represents the core analysis 

pipeline of the project. It takes in a dataset (points), a string label for the dataset 

(datasetName), and the number of clusters k to apply both clustering algorithms (K-Means 

and HAC).  

 

The function performs a full end-to-end processing and evaluation workflow on a given 

dataset. First, the function begins by printing a label identifying the dataset and the chosen 

number of clusters, and it logs the total runtime using startTotal = time.time().  

 

The first analytical step is outlier detection, handled by the function detectOutliers(), which 

finds points whose average distance to their 5 nearest neighbors is statistically anomalous. 

The time taken to perform this task is measured using startOutliers, and both the number of 

outliers and the outlier points themselves are printed to the console. 



 

Once the outliers are detected, they are removed from the dataset to form a cleaned dataset 

cleanedPoints, representing 𝑆’. The script prints how many points were removed and how 

many remain, ensuring transparency in preprocessing.  

 

Next, the function performs K-Means clustering on the cleaned dataset by calling 

kMeans(cleanedPoints, k). This groups the data into k clusters using iterative centroid 

optimization. The duration of this step is recorded with startKMeans, and the resulting 

clusters are passed to the silhouetteScore() function to evaluate the clustering quality based 

on cohesion and separation. The time to compute the silhouette score is also printed, giving 

a sense of computational cost. Following this, the same cleaned dataset is clustered using 

Hierarchical Agglomerative Clustering (HAC) via the hac(cleanedPoints, k) function. HAC is 

run with all four linkage methods (single, complete, average, and centroid), and the best one 

is selected based on silhouette score. Like with K-Means, the HAC clustering runtime and 

silhouette score computation time are both measured and printed.  

 

 

 

 

 

 

 

 

 



Finally, the function compares the two silhouette scores from K-Means and from HAC and 

prints which algorithm produced the better clustering result for that specific dataset. It 

concludes by displaying the total runtime for all operations, giving a clear performance 

snapshot. 

 

6. Running the Program 

To run the clustering program, simply execute the Python script in any Python 3.x 

environment. When the script starts, it prompts the user to enter the desired number of 

clusters (k). If the input is invalid or left blank, the program defaults to k = 3. After receiving 

the input, the script automatically generates three 3D datasets, each containing 500 points 

with varying spread values (10, 5, and 15) to represent different clustering scenarios. For 

each dataset, the program performs outlier detection using the k-nearest neighbor distance 

method, prints all detected outliers, and removes them to form a cleaned dataset. Both K-

Means and Hierarchical Agglomerative Clustering (HAC) are then applied to the cleaned 

data. HAC runs four times per dataset, once for each linkage method (single, complete, 

average, centroid), and selects the best one based on the Silhouette Coefficient. After 

clustering, the program prints the silhouette scores for both algorithms, identifies the better 

one, and logs the execution time for each major step including outlier detection, clustering, 

and silhouette calculation. This helps the user understand the computational cost and 

effectiveness of each algorithm across different datasets. All results are printed directly to 

the console in a well-structured format. 

7. Screenshots of Program Execution 



 

 

 



 

 



 

8. Source Code 

 



 

 

 

 

 

 

 

 



 

 



 

9. Conclusion  

This project was an excellent opportunity to learn more about the inner workings of 

clustering. Everything was programmed from scratch, from data generation to outlier 

detection and grouping, rather than depending on pre-existing tools or libraries. I now have 

far better knowledge of how K-Means and Hierarchical Clustering work in practice and how 

their effectiveness varies based on the kind of data they are used on. I was able to determine 

which algorithm worked best and why by testing with various spreads and using the 

Silhouette Coefficient to analyze the findings. The results were significantly different after 

the data was cleaned up by eliminating outliers, highlighting the significance of 

preprocessing.  

 

 

 

 


